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The status of the question of the effect of fast=-neutron irradiation on
the thermal conductivity and structure of semiconductors is examined,
It is shown that the reduction in thermal conductivity is the more con~-
siderable, the lower the temperature of investigation and the higher
the fast-neutron integral flux, though not above a certain limit for a
given material, Previously proposed models of the thermal conduc-
tivity of semiconductors for the temperature region 6~300° K are
briefly examined, The question of the effect of annealing on the sta-
bility of neutron-induced defects in germanium and silicon is given
separate consideration,

Modern semiconductor technology makes it possible
to obtain perfect single crystals, i.e., crystals in which
various types of lattice defects are reduced to a mini~
mum. An enormous amount of work on the various
properties of semiconductors points to the important
part played by defects, particularly in connection with
thermal conductivity. The study of the thermal conduc-
tivity of semiconductors irradiated with fast neutrons
is of special importance, since neutron bombardment
is a means of varying the number of defects. In partic-
ular, they can be made so numerous that the thermal
conductivity of the crystalline specimen is sharply re-
duced. This effect is especially clearly expressed at
low temperatures.

Apart from the considerable theoretical interest of
the problem, it is also important from the practical
standpoint of designing high-efficiency thermoelectric
instruments. The performance of thermoelectric in-
struments is characterized by the figure of merit[1,2]:
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Here, Q is the thermal emf; X is the thermal conduc-
tivity; o isthe electrical conductivity; and the subscripts
1 and 2 refer to the n- and p—type materials which form
the contact. It is usual to employ p~- and n-type semi-
conductors with similar values of the thermal andelec-
trical conductivities and approximately equal thermal
emf (of opposite sign). Under these conditions, it is

possible to introduce the figure of merit for a single
substance

7= %9 (2)

Thus, finding materials for thermoelectric applica-
tions reduces to obtaining the maximum value of Z.

Since each of the quantities entering into Eq. (2) is
a function of the physical, technological, and mechanical
properties of the material, it is not possible to predict
a priori the behavior of Z—special experiments are
needed. Of course, itis desirable to study all the quan-
tities Q, o, and X simultaneously.

Peierls [3] first drew attention to the specific be-
havior of the thermal conductivity at low temperatures,
and Berman [4] demonstrated the effect of irradiation
with fast neutrons on the thermal conductivity. The
problem of studying the thermal conductivity under the
simultaneous influence of the factors of temperature
and neutron irradiation is a new one, and so far very
little has been done in this direction. However, a num-
ber of authors have studied the thermal conductivity of
semiconductors at low temperatures [5—~13]. Many of
the experimental data are explained by the models of
Callaway [14, 15] and Klemens [16—18], which most
closely reflect the actual transport processes.

Callaway assumes that all phonon-scattering pro-
cesses can be represented by a relaxation time that is
a function of frequency and temperature. He also
assumes that the material is isotropically elastic and
that scattering in the vibrational spectrum can be
neglected. Moreover, he makes no distinction between
longitudinal and fransverse phonons.

Callaway considers the following scattering mech-
anisms: 1) impurity scattering, including point impuri-
ties (isotopes), whose relaxation time does not depend
on temperature and is proportional to w4 2) boundary
scattering described by the constant relaxation time
L/c, where c is the speed of sound and L is a certain
length which is approximately equal in magnitude to the
cross section of the specimen; 3) the normal three-
phonon process, whose relaxation time is taken pro-
portional to (sza)'l, where w is the angular frequency
and T is the absolute temperature; 4) Umklapp pro-
cesses, where the relaxation time is proportional to
[exp(—6/aT)w T% "1, where 6 is the Debye temperature
and a is a constant characterizing the vibrational spec~
trum of the material.

In solving the Boltzmann equation in the presence
of a temperature gradient, Callaway introduces the
relaxation times 7g! and 73!, which, respectively,
characterize the N and U processes. Then, the com-
bined relaxation time 75! is found to be
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When Ty is large, it is clear from Eqs. (12) and
(16) of [14] that the thermal conductivity is essentially
determined by the quantity 77, i.e., 75! = 7', In ex-
panded form, this can be written as follows:

15l = Aa)4—l-BlT3(o2+—Z—=‘cgl. (3)

The first term Aw? reflects the process of scattering
either at point impurities (isotopes) or at point defects,
and A does not depend on temperature. The second
term BlTaw? includes the Umklapp processes; Bj con-
tains the exponential temperature factor exp(—6/aT).
The last term c¢/L describes the boundary scattering.
A very interesting case is that in which the thermal
conductivity measurements are made on anisotopically
pure specimen, i.e., for ’rN'1 = B2T3w2, where B; does
not depend on the temperature. Then, the combined
relaxation time can be written in the following form:

15 = A+ (B, + B) T?e? + (4)
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According to Callaway, the thermal conductivity can
be represented as

p=—t g ey, (5)
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and k is Boltzmann's constant.
Neglecting the second term (for simplicity) and
substituting (6) into (5), we obtain
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Introducing the dimensionless variable x = hw/27kT and
substituting (4) into (6), we have

X

0T
A

]1:< 2n kT )5‘ , X expx _ dx, (8)
B (Dx*+Ex2+%) (expx —1y

\

9)

D=A ( 2n kT )4,
h

where

E~ (8 +B)T|

2 kT )2 (10)

and h is Planck's constant.
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At very low temperatures, D and E are much
smaller than ¢/L, and the denominator can be simpli-
fied, The upper limit can be set equal to infinity, and
in the first order of D and E we obtain
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i.e., in this case the thermal conductivity is propor-
tional to T, If D is large, then the scattering at iso-
topes is very effective for short waves, and it is pos-
sible to evaluate (8) by assuming approximately that
xzexp x(expx — 1)2 is equal to unity. Thus, we have
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It has been shown that at temperatures above 30° K the
correction in Eq. (12) is determined only by the first
term when the brackets are removed. Then
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If we consider that in (5) the term SI, was neglected,
and if it is in fact small, it follows from (13) that the
thermal conductivity on both sides of the low-tempera-
ture maximum is proportional to 7%/ L i B, is only
slightly less than Bj, an exponential dependence
exp(6/2aT) is observed. Without presenting Callaway's
calculation, in which he takes the term BI, intoaccount,
we obtain the expression for the thermal conductivity
of an isotopically pure material in the following form:
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and at very low temperatures
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It is clear from (15) that the normal processes do not
make a contribution at very low temperatures (absence
of Bz).

Although the Klemens model gives broader coverage
to the possible phonon-scattering mechanisms and
antedates the Callaway model, we have started by ex-
amining the Callaway model since it has been devel-
oped in exceptional detail. Apart from the processes
considered above, the Klemens model also includes the
high-order phonon-phonon interaction worked out by



Pomeranchuk [19]. However, since we are interested
in low temperatures, basing ourselves on Pomeran-
chuk's research, we can state that in the given case
these interactions play only a small part [20]. Klemens
paid special attention to the effect of the isofopic com-
position of the crystal and explored the precise content
of the coefficient A. It is clear from Eq. (4) that the
first term can be written as 1/7 = Aw? and, according
to Klemens,
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For convenience, we introduce the following notation:
A= Vo (17)
dm 3

and

m; \?
F=Efi(1—7), (18)

where Vj is the atomic volume; mj is the mass of the

i-th species of atom; m is the mean atomic mass; and
/i is the percentage content of the atomic species m;.

In the case of a material containing one type of impu-
rity

A= Vo
4n c®

n(l —n), (19)

where n is the impurity concentration.

It is now a matter of history that the first semicon-
ductors to have their physical properties investigated
were the monatomic semiconductors germanium and
silicon. This was for both practical and theoretical
reasons, since it is much easier to describe the pro-
cesses inmonatomic thaninpolyatomic semiconductors.

Experiments on the thermal conductivity of semi-
conductors irradiated with fast neutrons have shown
that after irradiation various types of defects appear:
a) point defects (vacancies, interstitials, and vacancy-
interstitial pairs); b) group aggregations of vacancies
and interstitials. Depending on the number and size of
these defects and the isotopic composition of the speci-
mens, the thermal conductivity of the semiconductors
varies. On the other hand, it can be stated that the
study of thermal conductivity, Hall mobility, electrical
conductivity, thermal emf, and annealing in combina-
tion with the above-mentioned factors throws light on
the nature and properties of "artificial” (induced) and
natural defects.

Let us examine in more detail the experimental data
obtained by studying the thermal conductivity of neu-
tron-irradiated germanium and silicon.

THERMAL CONDUCTIVITY OF GERMANIUM

a) Temperature region from 80 to 300° K. Accord-
ing to [18], for a nondegenerate semiconductor and low

temperatures, the thermal resistance for phonons can
be represented in the form

‘—1—:AT“3+F(T)+BT“3exp(——G—), (20)
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where A, B, and a are constants and 6 is the Debye
temperature. The first term represents boundary
scattering. The second term characterizes phonon
scattering at induced defects. In the case of point de-
fects, F(T) is a linear function of temperature. The
third term characterizes U-processes, which predom-
inate at higher temperatures. The graphs in Fig. 1
represent the variation of the additional thermal resis-
tance 1/X,4q induced by bombardment in accordance
with the relation

’ (21)

where X, and Xy are, respectively, the actual and ini-
tial thermal conductivities. These quantities are rep-
resented graphically in Fig. 2, from which it is clear
that the thermal conductivity decreases relative to the
initial value the more considerably, the higher the
neutron flux. The authors of [22] assumed that X varies
as a function of temperature, i.e., as T"2, and this
coincides with the data of [9—11]. For a dose of 6-10%
n:cm=-2 (neutrons per square centimeter), 1/Xadd di-
minishes markedly as the temperature rises. This
may be attributable to phonon scattering at large de—
fects. According to the theory [7], if phonons are
scattered by this type of defect, the mean free path
of the phonons does not depend on temperature, and
the thermal resistance is inversely proportional to the
specific heats i. e., 1/Xadd decreases as T increases.
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Fig. 1. Variation of additional ther-
mal resistance 1/Xqq (W1 deg1.
*cm) of germanium and silicon with
temperature (°K): 1) and 2) germa-
nium after irradiation at fluxes & =
=6-10"n.cm~2and 1.2-10% 1.
-ecm=% 3) silicon after irradia-
tion at & = 6-10" n-cm-2,
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Fig. 2. Thermal conductivity X (W-
-deg™1-em~1) of silicon (1, 2) and
germanium (3,4, 5): 1) before irra-
diation; 2) after irradiation at & =
=1.2-10%n. em~% 3) before irra-
diation; 4) and 5) after irradiation
at @ = 6-10" n-em-2and 1.2-10%
n-cm-?,

For a dose of 1.2-10% n. em~2, the additional thermal
resistance remains almost constant, increasing only
slightly with increase in temperature. This is easily
explained if it is assumed that large and relativelyiso-
lated defects are simultaneously induced during bom-
bardment. If it is assumed that their contributions to
the thermal resistance are supplementary,then 1/X,44
must be regarded as being formed of two terms (only
the left-hand side of Eq. (21) is considered), one of
which varies in a direction opposite to the temperature,
while the other varies in the same direction as the
temperature. Very similar results were obtained in
[21], where n-type germanium with a resistivity of 3
ohm + cm was investigated. The behavior of the corre-
sponding curves (Fig. 1, curves 1, 2, and Fig. 2, curves
2, 3) is fundamentally the same. It appears that at low
temperatures 1/Xadd varies approximately as T,
This may hold true for doses not exceeding 6.7 - 10"
n-cm-2.

Using the Callaway model and the experimental data
of [22], Albany and Vandervyver [23] demonstrated that
the agreement between theory and experiment was quite
good. Since the temperature region in question ranges
from 80 to 300° K, in Eq. (5) it is necessary to take
into account the term 15, where
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Expressions (22), (23) in conjunction with Eqs. (4)—
(6) embrace four parameters (L, A, By, and By) that must
be determined. The mean phonon velocity ¢ and the
Debye temperature for germanium [14] are estimated
at 3.5-10° cm - sec~! and 375° K, respectively (it is
assumed that their changes on irradiation can be ne-
glected). In [8] it was shown that for unirradiated ger-
manium I and A have the following values: 0.564 cm
and 2.4+ 10~4 sec®, Above it was established [21, 22]
that X decreases as the flux increases, but, as the
authors of [23] assume, this cannot be attributed ex-
clusively to the increase 71 = Aw! in the scattering of
phonons at point or "small" defects.

For unirradiated semiconductors,

L=29n"128172 (24)

where S is the cross section of the specimen, and A
can be represented in the form

o (I AN

Essentially, Eq. (25) is identical with Eq. (16). Albany
and Vandervyver, using the experimental data of [22]
and Eq. (5), determined the A and L for irradiated
germanium by curve fitting (Table 1).

If it is assumed that the decrease in L is associated
with the formation of defect aggregations and that the
effective cross section for phonon scattering [24] is
equal to the geometric cross section 7R of a sphere of
radius R, the number of defect aggregations per em®
is given by the formula

1

Ne—or— |
R

(26)

By means of the electron microscope we can determine
both R and the surface density of the defect aggrega-
tions, and knowing the number of defects per unitlength
[25], we can find N and, hence, L. The values of By +
+ By and By/(B; + By) were taken from [14] and are
equal to 2.8+ 1072 gec - deg—3 and 0.07, respectively.
The curves constructed from these data are in quite

Table 1

Values of the Parameters A and L for Unirradi-
ated and Irradiated Germanium

Irradiated Ge
Unirradiated Ge & = 61070 - cm"]‘l’ =1.2.10%n . o
A.107%%, sec? 2.4 3.5 5
L, em 0.564 6-10—* 3.5.10—1
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Fig. 3. Variation of [(Xo/X)? —1)° during
the irradiation of germanium with fast
neutrons (T = 77°K, Xg=3 W-cm~1!.

-deg=1).
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good agreement with the experimental points in Fig. 2
(curves 3,4, 5).

In [26, 27] the change in the thermal conductivity of
germanium (Fig. 3) during irradiation at 80° K was
measured for the first time. This work is distinguished
by the fact that the functions (which include the ratio
of the initial to the measured thermal conductivity)
have a different form. Here, the Callaway model is
used as a basis for computing the dimensions of the
defect aggregations. In particular, by using the exper-
imental curve (Fig. 3), it is possible to construct the
graph of thermal conductivity versus integral neutron
flux.

b) Temperature region below 80° K. Dong [25, 28]
measured the thermal conductivity of germanium with
a resistivity of 10 ohm - cm by an absolute method up
to 16° K. He also employed the Callaway model for
computing the thermal conductivity. On the basis of the
combined relaxation time (Eq. (4)), where B = B; +B,,
it is possible to obtain the following expression for the
thermal conductivity of the system:

1 a;'D o X
= \ P — 3 2 ¢
on2¢ J 4q2RT (A(D - BT e +"E
0

7
exp—1O_
2n kT
[exp ho — I]
2n kT i
where wpy = 2rk6/h = 4.9 - 10*? rad/sec and ¢ = 3.5 10°
cm/sec, B = 2.8+10"% sec - deg~3. Selecting the param-
eters A and L in Eq. (27) so that the calculated X
(curves 1,2, and 3 in Fig. 4) coincides with the corre-
sponding experimental points, one obtains (see Table
2) the numerical values of A and L.

As may be seen from Fig. 4 (curves 1, 2, 3), the
agreement between theory and experiment is quite sat-
isfactory. It is interesting to note that the factor A
which, according to Klemens (Eq. (25)), is proportional
to the number of point defects, varies only slightly,
whereas L, which characterizes the mean free paths
of the phonons, decreases considerably at low temper-
atures. It appears that here the effect of the isolated
defects is masked by the isotopic defects, whose num-
ber in ordinary germanium is on the order of 10%
em~3, The sharp decrease in L is determined by the
formation of a large number of regions of defect aggre~

gation. In the given case (& = 5- 109 n- em=2), the
concentration of large defects reaches the order of 10%

X

dw, 27)

cm-3, It is assumed that the phonons are scattered
uniformly at the isolated defects (in particular, iso-
topes) and partially at large defects. The mean free
path of the phonons scattered at large defects is deter-
mined by relation (26):

1
L

Using Eq. (18) in the case of Frenkel defects
(vacancy-interstitial), we can write relation (17) in the
form

<L n RN,

W on
T 4act N’ (28)

where n is the defect density, and N is the atom den-
sity.
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Fig. 4. Thermal conductivity X (W-deg-!-em™1)
of germanium (1, 2,3—p = 100 ohm * cm; 4,5, 6—
p= 0.1 ohm-cm) and silicon (7,8,9—p = 0.35
ohm - cm): 1) before irradiation; 2) after irradi-
ation at & = 5107 n-om=% 3) after annealing
at 100° C for 80 hr; 4) before irradiation; 5)and
6) after irradiation at & = 1.11- 10" n+ em~? and
2.5-10" n-em=2 7) before irradiation; 8) and 9)
after irradiation at & = 1.11- 10" n- em-2 and
2.5-10" n-cm-2.

Table 2

Values of the Parameters A and L for Unir-
radiated and Irradiated Germanium

Helium A,sec® L,cm
Before irradiation 7104 0.5
After irradiation 9.10—44 103
$ =5-1017 n.cm’?
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However, the hypothesis of the formation of iso-
lated defects is untenable. In fact, the concentration of
_ vacancies and interstitials corresponding to a flux of
5-10" n.cm~2 is on the order of 10% ¢cm~3% and the
value of A from relation (28) is less than its initial
value. In Fig. 4 (curves 1,2, and 3), it is clear that
the thermal conductivity decreases sharply, especially
at low temperatures, It is interesting to note thatafter
irradiation the low-temperature maximum is shifted
toward the region of higher temperatures. Exception-
ally interesting, from the experimental standpoint, is
the work of Albany and Vandervyver [29], who mea-
sured the thermal conductivity of n-type germanium
on specimens with a resistivity of 0.1 ohm-cm by an
absolute method in the region of 5° K. The germanium
was irradiated with doses of 1,1+10% and 2.5+ 10" n-
cem™~? After irradiation, the germanium was found to
have been converted from the n-type to the p-type.
The authors of [29] did not attempt a quantitative in-
terpretation of these results in terms of any partic-
ular model. It should be noted that curves 4, 5, 6
(Fig. 4) have approximately the same shape as curves
1, 2, 3 (Fig. 4); i.e., as the dose increases the low-
temperature maximum has a tendency to shift to the
high-temperature region.

THERMAL CONDUCTIVITY OF SILICON

a) Temperature region from 80 to 300° K. In [22],
the thermal conductivity of silicon was determined at
a dose of 1.2+ 10® n. cm-2 (Fig. 2, curves 1 and 2).
The additional thermal resistance is determinedfrom
relation (21) and is presented in Fig. 1 (curve 3). The
picture is the same as for germanium irradiated under
similar conditions and what was said in connection with
germanium also applies here. However, in this caseX
varies as a function of temperature in accordance with
the law T™*8, The decrease in thermal conduectivity is
again attributed to the scattering of phonons at large
and isolated defects.

Almost identical results were obtained by Albany
and Vandervyver [30], who irradiated n-type silicon
having a resistivity of 1 ohm-cm (Fig. 5, curves A to
J). The Klemens model was used as a basis for inter-
pretation. The thermal conductivity of the lattice for
the combined relaxation time

vi=Aot (29)

can be expressed as

1
4
Xo= 2h 1 x*exp x dx+
4An®cAT (expx— 12
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Numerical values of the second integral as a function
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of R are given in [24]. At high temperatures, it isnec—
essary to take U-processes into account, and this can
be expressed by the relation

6
— BT%ex (*—) , 32
v p ol (32)

where B and a are equal to 8.25 W/cm * deg4 and 1,
respectively [6]. Thus, the thermal resistance is de-
termined by three processes and, in accordance with
the law of addition of thermal resistances, we have

W=yt =yt =

= We + W, (33)
In Fig. 6 curves j and a represent the variation of the
thermal resistance as a function of temperature (ex-
perimental values) before and after irradiation, re-
spectively, while the curves j' and a' represent the
difference W = Wy, — Wiy (squares). The quantity Wp
can be calculated from (30), where the values of Aand
L are selected so as to give the best agreement with
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Fig. 5. Thermal conductivity X (W-cm™1.
+deg~1) of germanium (curves 1, 2, 3,4)
and silicon (A,B,C,D,E,F,G,H,L,J, p=
=1 ohm - em): 1) before irradiation; 2and
3) after irradiation at & = 6+ 10% and 1.2-
-10® n- cm-% 4) after annealing at 260° C
for 2 hr; J) before irradiation; A) after ir-
radiation at = 1.2-10% n-em~% B, C, D,
E, F, G, H and I) after annealing for 1 hr
at temperatures of 133, 166, 200, 233, 266,
300, 333, 366° C, respectively; I corre-
sponds to additional annealing for 1 hr at
400° C.
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Fig. 6. Thermal resistance of silicon: j)

unirradiated; a) irradiated; e) annealed;

ji'sa', e")YWge = Wexp ~ Wy (squares),
Weale (triangles).

the experimental values of the thermal resistance on
the temperature interval in question.

The calculated values of We are represented by the
triangles on curves j' and a', while the corresponding
A and L are given in Table 3. .

In Fig. 6 there is obviously good agreement (curve
a') between the experimental data (squares) and the
calculated values (triangles). The agreement is some-
what less satisfactory for the curve j'. With the object
of stressing the importance of the factor L, taking for
A the same values as for the irradiated silicon (2.7 -
£ 1074 sec3) and for L the value for unirradiated sili-
con (2.76+10~1 em), we find that the curve m thus cal-
culated almost coincides with the curve a' (unirradiated
silicon). At not very low temperatures, most of the
longwave phonons obey the Debye distribution

Ry
A :Vos(%), (34)

where A is the wavelength of the phonon. For temper-

atures of 80 and 300° K, A is 22and 6/°x, respectively.
b) Temperature region below 80° K, The only mea-

surements made so far have been on n-type silicon

with a resistivity of 0.35 ohm - cm in the region of 5°K.

Curves 7, 8, and 9 in Fig. 4 show the variation of the
thermal conductivity as a function of neutron flux and
temperature. From a comparison of curves 7, 8, 9
and 4, 5, 6 (Fig. 4), it is clear that, for identical
temperatures and neutron fluxes, the thermal conduc-
tivity in the region at the left of the maximum is more

Table 3

Values of the Parameters A
and L for Unirradiated and
Irradiated Silicon

Py 1
Silicon

A-107%%gec® | L-10%, el

Irradiated 2.7 } 1.5

Unirradiated

1.2 ‘ 276

sharply changed by irradiation in the case of germa-
nium than in the case of silicon. There is practically
no shift of the low-temperature maximum of the ther-
mal conductivity of silicon to the high-temperature
region with increase in temperature.

STABILITY OF DEFECTS

a) Germanium. Since it has been established that,
as a result of irradiation with fast neutrons, defects
of various types are formed, it is important to inves-
tigate their stability. In [21] as the external factor it
was decided to employ thermal heating of the irradiated
specimen. Curve 4 in Fig. 5 characterizes the change
in thermal conductivity as a resultof a two-hour anneal
at 260° C. The germanium specimen was irradiated
with a dose of 6- 10" n-cm=2. This curve has a ten-
dency torevert tothe initial curve (beforeirradiation).
The fact that this curve is parallel to the initial curve
shows that the residual defects in the crystal are
relatively isolated; i.e., it is primarily large aggre-
gations that are affected. The authors of [21] state
that the thermal conductivity is completely restored
after annealing at 360° C for 2 hr. It should be noted
that the crystal thus annealed is again converted into
an n-type crystal. In relation to the elimination of
large defect aggregations at sufficiently high temper-
atures (=350° C), the latter assertion is consistent
with the data of [31], where infrared absorption was
used to study recovery processes. In another interest-
ing experiment [25], neutron-irradiated germanium
was annealed for 80 hr at 100° C in a vacuum. The
thermal conductivity was restored almost to the initial
value (Fig. 4, curve 3) in the temperature region from
50 to 100° K, but the recovery was weak at lower tem-
peratures. Apparently the decisive role is played by
the time and not the temperature factor (compare
curve 4 in Fig. 5). It follows from Fig. 4 that thereis
a tendency for the low-temperature maximum of the
thermal conductivity to be shifted to the low~tempera-
ture region. The quantity L, it appears, increases
considerably, but does not reach the initial value,
while the quantity A changes only slightly. These
quantities have the following values: 3.5- 102 ecm and
1.1-10743 sec?, respectively (see Table 2). According
to (26), the increase in L may be due to a decrease in
the number or size of the aggregations,. or-to a simul-
taneous decrease in these two parameters. Since an
increase is also accompanied by an increase in A, it
may be assumed that a large number of aggregations
are converted into small isolated defects (Eq. (26)).

b) Silicon. In [32], the effects of annealing silicon
irradiated with an integral flux of 1.2 10% n-cm-?
were studied in the temperature regionfrom70to400°C,
The thermal resistance was used to characterize
the changes taking place in the material. Assuming
that the increase in resistance is proportional to the
defect density, we can determine the fraction of un-
annealed defects

W —w,
W, —W,

13

f= (35)
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for the temperature interval in question, Here, W is
the thermal resistance before irradiation; Wy is the
thermal resistance after irradiation, but before an-
nealing; and Wj is the thermal resistance after irra-
diation and annealing. The rate of change of the number
of defects with temperature can be written in the form

dn
ar

v E )
=-—-— nyexp|— —— 36
el p( ) (36)

where v is the frequency factor; n is the defect density;
v is a constant of kinetic order; E is the activation
energy of the recovery processes; k is Boltzmann's
constant; and T is the absolute temperature. Since a
relation of proportionality exists between n and f, for
the point of inflection we have

Yy da __ E

f dr  ET®
For v = 2 the activation energy is 1.0 + 0.1 eV. The
same value of the activation energy (1.09 eV) was
obtained by Mayer and Lécomte [33]. Above we saw
that large defects recover first, and only then the point
defects. The authors show that a similar process takes
place in this case also, namely, at 233° C, 73% of the
residual unannealed defects correspond to point de-
fects. At higher temperatures (from 400 to 1100° C), it
is exclusively a question of radiation-induced point
defects. Only a fraction of the point defects, estimated
at 8%, remains unannealed. Extensive research into
the effect of annealing on thermal conductivity is re-
ported in [30]. Irradiatedsilicon (integral flux 1.2 - 10%
n-em~? curve A, Fig. 5) was subjected to successive
isochronous anneals lasting 1 hr in each case. The
intermediate curves (B, C,D, E, F, G, and H, Fig. 5)
were recorded at temperatures of 133, 166, 200, 233,
266, 300 and 333° C. Curve 1 was recorded at 366° C.
Annealing was carried out for 1 hr plus an additional
hour at 400° C (no practical difference was noted be-
tween these anneals). It is quite clear from the figure
that as the annealing temperature increases so does
the thermal conductivity (the number of phonon-scat-
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Fig. 7. Variation of the parameters L (t~1 = ¢/L)(a)and
A (r-l= Aw4) (b) as a function of annealing temperature
(°C).
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tering defects is reduced), and at 400° C it almost
reaches its original value.

In addition to their study of the effect of annealing
on thermal conductivity [30], in [34] Albany and Van-
dervyver studied the question of the variation of the
parameters L and A. The variation of L and A as func-
tions of temperature is shown in Fig. 7. It is clear
from Fig. 7a that L begins to decrease particularly
sharply at a temperature of about 350-300° C., ¥ it is
assumed that the number of defects, given by Eq. (26),
does not decrease, it follows that their size decreases.
This is confirmed by the behavior of the quantity A
(Fig. Tb), especially in the temperature region above
300° C. But, in reality, the decrease in the size of the
defects is accompanied by their reduction.

SUMMARY

1. Irradiation with fast neutrons reduces the ther-
mal conductivity of germanium and silicon semicon-
ductors. The reduction is the greater, the higher the
temperature, and the higher the integral neutron flux,
though not beyond a certain limit for a givenmaterial.

2. The sharp decrease in the quantity L, charac-
terizing the mean free path of the phonon after irradi-
ation with fast neutrons, is a result of the formation
of a large number of regions of defect aggregation.

3. For germanium and silicon in the temperature
range from 80 to 300° K the thermal conductivity varies
as a function of temperature as T {2 and T~ ¢, re-
spectively.

4. With increase in the integral neutron flux through
single-crystal germanium, the low-temperature maxi-
mum of its thermal conductivity has a tendency to shift
to the region of higher temperatures; in the case of
silicon, the low-temperature maximum is not dis-
placed.

5. In the temperature range from 5 to 20° K, the
change in the thermal conductivity of germanium after
irradiation is greater by a factor of 2—3 than the
change in the thermal conductivity of silicon.

6. At annealing temperatures of 350° C, the thermal
conductivity of neutron-irradiated germanium and sili-
con is almost completely restored to the original value.

7. It follows from the experimental data that the
regions of defect aggregation are 50—150 & in size.

NOTATION

Z is a figure of merit; Q is the thermal emf; X is
the thermal conduectivity; o is the electrical conduc—
tivity; w is the angular frequency; c is the velocity of
light; T is the absolute temperature in °K; 0 is the
Debye temperature; ‘rﬁi is the relaxation time for nor-
mal processes; 7j! is the relaxation time for Umklapp
processes; k is Boltzmann's constant; B; and B, are
proportionality factors; V, is the atomic volume, q is
the electronic charge; & is the fast-neutron integral
flux.
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